Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zuo-Liang Jing,* Min-Jie Guo, Xin Chen and Yu Ming

College of Sciences, Tianjin University of Science and Technology, Tianjin 300222, People's Republic of China

Correspondence e-mail: jzl74@tust.edu.cn

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.042$
$w R$ factor $=0.120$
Data-to-parameter ratio $=18.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

4-[(4-Methoxybenzylidene)amino]-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one

The crystal structure of the title compound, $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$, shows the molecule to be essentially planar with the exception of the terminal phenyl group. Molecules are associated via intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

Metal complexes of Schiff bases have attracted much attention because they can be utilized as model compounds for the active centres in various enzymes and proteins (Kahwa et al., 1986; Santos et al., 2001). Important to the understanding of the coordination potential of these ligands is a knowledge of the ligand structure. Accordingly, the synthesis and crystal structures of Schiff base ligands derived from 4-aminoantipyrine, such as thenoyltrifluoroacetone (Yu et al., 2002), 4-hydroxy-3-methoxybenzaldehyde (Diao et al., 2005) and 2,4dichlorobenzaldehyde (Jing et al., 2005), have been reported.

(I)

In the molecular structure of the related title compound, (I) (Fig. 1), the expected geometric parameters are observed (Table 1). The central chromophore containing the $\mathrm{C} 9-\mathrm{C} 11 /$ $\mathrm{N} 1-\mathrm{N} 3 / \mathrm{O} 2$ atoms is planar, with an r.m.s. deviation for fitted atoms of 0.038 (2) \AA; the 4-methoxybenzylidene group (C1$\mathrm{C} 8 / \mathrm{O} 1$) is also planar, with an r.m.s. deviation of 0.027 (5) \AA. The dihedral angles formed between these planes and that

Figure 1
The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level.

Received 23 November 2005 Accepted 14 December 2005 Online 21 December 2005
through the C14-C19 phenyl ring are 48.24 (5) and $9.40(6)^{\circ}$, respectively. Intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding stabilizes the molecular conformation, while intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding stabilizes the crystal structure; geometric details are given in Table 2. The molecules associate in a zigzag pattern along the c axis, forming a supramolecular structure, as illustrated in Fig. 2.

Experimental

An anhydrous ethanol solution of 4-methoxybenzaldehyde (1.36 g , 10 mmol) was added to an anhydrous ethanol solution of 4 -amino-1,5-dimethyl-2-phenyl-1,2-dihydropyrazol-3-one ($2.03 \mathrm{~g}, 10 \mathrm{mmol}$) and the mixture was stirred at 350 K for 8 h under N_{2}, whereupon a yellow solution appeared. The solvent was removed and the residue recrystallized from N, N-dimethylformamide. The product was isolated and then dried in vacuo to give pure (I) in 79% yield. Yellow single crystals suitable for X-ray analysis were obtained by slow evaporation of an N, N-dimethylformamide solution of (I).

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$
$M_{r}=321.37$
Monoclinic, $P 2_{1} / c$
$a=7.1407(10) \AA$
$b=24.864(3) \AA$
$c=9.4733(13) \AA$
$\beta=96.700(2)^{\circ}$
$V=1670.4(4) \AA^{3}$
$Z=4$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.980, T_{\text {max }}=0.988$
11145 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.120$
$S=1.04$
3949 reflections
220 parameters
H -atom parameters constrained
$D_{x}=1.278 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2518 reflections
$\theta=2.3-23.6^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, yellow
$0.20 \times 0.16 \times 0.14 \mathrm{~mm}$

$$
\begin{aligned}
& 3949 \text { independent reflections } \\
& 2677 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.022 \\
& \theta_{\max }=27.8^{\circ} \\
& h=-9 \rightarrow 8 \\
& k=-31 \rightarrow 32 \\
& l=-12 \rightarrow 11
\end{aligned}
$$

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0574 P)^{2}\right. \\
&+0.1906 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.19 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

O1-C1	$1.422(2)$	$\mathrm{N} 2-\mathrm{C} 10$	$1.3589(18)$
$\mathrm{O} 1-\mathrm{C} 4$	$1.3684(18)$	$\mathrm{N} 2-\mathrm{C} 13$	$1.4620(17)$
$\mathrm{O} 2-\mathrm{C} 11$	$1.2336(16)$	$\mathrm{N} 3-\mathrm{C} 11$	$1.4065(17)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.2754(18)$	$\mathrm{N} 3-\mathrm{C} 14$	$1.4181(17)$
$\mathrm{N} 1-\mathrm{C} 9$	$1.3920(17)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.460(2)$
$\mathrm{N} 2-\mathrm{N} 3$	$1.4040(15)$	$\mathrm{C} 9-\mathrm{C} 11$	$1.436(2)$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 4$	$117.94(13)$	$\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 14$	$120.21(11)$
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 9$	$120.85(13)$	$\mathrm{C} 11-\mathrm{N} 3-\mathrm{C} 14$	$122.99(11)$
N3-N2-C10	$107.12(10)$	$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 7$	$121.58(14)$
N3-N2-C13	$117.60(11)$	$\mathrm{O} 2-\mathrm{C} 11-\mathrm{N} 3$	$122.87(13)$
C10-N2-C13	$123.72(12)$	$\mathrm{O} 2-\mathrm{C} 11-\mathrm{C} 9$	$131.99(13)$
N2-N3-C11	$108.88(11)$		

Figure 2
Intermolecular hydrogen-bonding interactions (dashed lines) in (I).

Table 2
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{O} 2$	0.93	2.34	$3.0310(18)$	131
C5-H5 $\cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.56	$3.2838(19)$	135
$\mathrm{C} 12-\mathrm{H} 12 A \cdots \mathrm{O}^{2 i}$	0.96	2.43	$3.3815(19)$	172

Symmetry codes: (i) $-x,-y+1,-z+2$; (ii) $x+1, y, z$.
The H atoms were included in calculated positions and refined using a riding model, with aromatic $\mathrm{C}-\mathrm{H}=0.93 \AA$, methyl $\mathrm{C}-\mathrm{H}=$ $0.96 \AA$ and $\mathrm{N}-\mathrm{H}=0.96 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, N)$ for aromatic and N -bound H atoms, and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

References

Bruker (1997). SHELXTL. Version 5.10 for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SMART (Version 5.0) and SAINT (Version 4.0) for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.
Diao, C.-H., Fan, Z., Yu, M., Chen, X., Jing, Z.-L. \& Deng, Q.-L. (2005). Acta Cryst. E61, o2322-o2323.
Jing, Z.-L., Yu, M., Chen, X. \& Deng, Q.-L. (2005). Acta Cryst. E61, o3359o3360.

organic papers

Kahwa, I. A., Selbin, J., Hsieh, T. C.-Y. \& Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179-185.
Santos, M. L. P., Bagatin, I. A., Pereira, E. M. \& Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838-844.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Yu, M., Wang, J.-L. \& Miao, F.-M. (2002). Acta Cryst. E58, o1182-o1184.

